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Supplementary methods 

Pfam relevant details 

The Pfam scoring system is complicated, so we present a summary of its features that 

are relevant for the work described here. Pfam is a database of HMMs representing 

protein and domain families. Each domain prediction has a “bit” score equivalent to 

the base-2 log-odds ratio of the maximum probability that the sequence was produced 

by the HMM versus the probability that it was generated by the background amino 

acid distribution. An E-value is calculated for each HMM based on its bit score 

distribution on random sequences, fit to an Extreme Value Distribution. Each family 

in Pfam version 23 can be predicted using a local (allowing fractional domains) or a 

glocal (forcing domains to be complete) HMM, and both local and global predictions 

come with manually curated thresholds on the bit scores called “gathering” 

thresholds. Lastly, each family and each mode (local and glocal) have two thresholds, 

one for each domain (represented here by Ti for domain i, with optional l or g 

superscripts when we want to focus on the local or glocal values), and one for the sum 

of all domains of each family (called “sequence” threshold in Pfam, represented here 

by TF for family F, again with optional l or g superscripts). 

Pfam Extended GA thresholds 

The Standard Pfam GA thresholds produce a single datapoint with a fixed FDR and a 

fixed number of predictions. To estimate the performance of these non-context 

thresholds under different FDRs, we shift every threshold as follows. Choose a fixed 

“bit shift” d (we chose values between -10 and 10 in increments of 0.1). Then using 
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the same notation as before, every domain threshold Ti is now Ti + d, and similarly 

every sequence threshold TF is now TF + d. That way every d produces a new 

datapoint in our plots, with negative d producing more permissive thresholds with a 

higher FDR, and positive d producing more stringent thresholds with a lower FDR 

relative to the Standard Pfam. Predictions were made on the “local and glocal 

consolidated” domain set explained below. 

dPUC implementation details 

a. Local and glocal consolidation. We made Pfam predictions with HMMER2, E ≤ 

1000, on each proteome. Standard Pfam predictions were obtained using the curated 

gathering thresholds, and choosing between overlapping local and glocal predictions 

of the same family when both pass thresholds by using the curated ordering rules for 

each family (which might be to choose the one with the smallest E-value, or always 

favoring either the local or glocal prediction). For all domain predictions excluding 

the Standard Pfam, we consolidated the local and glocal predictions into a single set 

without applying thresholds, as follows. If a glocal domain prediction overlaps local 

domain predictions of the same family, we resolve overlaps as follows.  Let the glocal 

score be denoted by H
g
, its Pfam domain threshold be T

g
, and the (potentially 

multiple) local scores be Hi
l
 with domain threshold T

l
. We keep the glocal prediction 

if 

H
g
 − T

g
 > Σi ( Hi

l
 − T

l
 ), 

otherwise we keep the local predictions. This selects the predictions with the greatest 

total score (“normalized” by the thresholds). Very rarely, this procedure leads to 

domain loss, since it does not consider the Pfam “sequence” threshold when 

comparing scores, so a domain that passed both (domain and sequence) thresholds 

may be replaced by a domain that does not. However, when the sequence threshold is 
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the same as the domain threshold for both modes, this procedure is guaranteed to keep 

domains that pass both thresholds. 

b. Positive elimination. The initial predictions may be too numerous for our direct 

approach to work efficiently, so they are pruned iteratively as follows. The full set of 

domains is P, but all domains that pass the Pfam gathering thresholds pass this filter 

automatically, and the rest of the domains are candidate domains. For every candidate 

domain i, let its score be Hi, and its context scores with the rest of the domains j be 

Cij. Define the domain i’s “total positive score”, given P, as 

 Si,P
+
 = Hi − Ti + Σj ∈ P max { 0, Cij } ∀i. 

Note that this score is an upper bound of the score Si,D for every D ⊆ P, including the 

subset of domains D that optimizes the dPUC problem. We check if these positive 

scores satisfy the two Pfam thresholds, 

 Si,P
+
 ≥ 0  ∀i and 

 Σi ∈ F Si,P
+
 + Ti ≥ TF

*
 ∀families F, 

where TF
*
 is the average value of the local and glocal thresholds TF

l
, TF

g
, where this 

average is weighted by the number of each type of prediction for the domains in 

family F in the sequence. Domains that do not pass these thresholds in this optimistic 

scenario that ignores negative scores and allows overlaps, will not pass in the general 

problem, so they are eliminated from P. This elimination is iterated, reducing the 

problem by reducing |P|, until we converge to a set of domains P that do not allow 

further elimination. Each iteration runs in O(|P|
2
) time, and in practice the number of 

iterations is small even for E ≤ 1000. 

c. ILP.  After our positive elimination, we solve the remaining hard combinatorial 

optimization problem using lp_solve 5.5.0.14 [1]. Note that TF
*
 as defined above 

cannot be updated with the ILP problem, since this threshold is a non-linear function 
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of the xi variables, and is instead set to the average value of the local and glocal 

thresholds for the domains in the family F present in the input, as a reasonable 

approximation. 

In most cases, lp_solve can find the optimal solution to this maximization problem. 

However, these problems become too hard if too many domains are present, so we 

force lp_solve to timeout in 60s, and try a hierarchy of heuristics based on simplified 

problems as lp_solve continues to timeout. After the first timeout, we remove all 

“disallowed” overlaps, keeping the domains with the lowest E-values. After the 

second timeout, we remove all candidate domains, so only domains that pass the Pfam 

thresholds are left, but we run lp_solve so domains with negative context are 

eliminated. After the third timeout, we simply return the domains that pass Pfam 

thresholds without using context. We note that for P. falciparum with E ≤ 1 all but 

one protein were solved using the original ILP, and PF11_0506 (containing 149 

repeats of the Ag332 family) was solved after the first timeout. 

nCODD context method 

For the purpose of further comparison, in this work we introduce a novel double 

positive and negative filter, nCODD (“negative CODD”). Compared to CODD, here 

we additionally use negative context pairs, which are the complement of positive 

domain pairs limited to domains observed in the filtered architectures. We use the 

same notation of sets here as in the original CODD (see Methods in main text).  First, 

for every domain d in G sorted ascending by E-value, d is eliminated if it has negative 

context with domains in G with lower E-values. We proceed by setting P = G. Lastly, 

for each domain d in D sorted ascending by E-value, we transfer d to P if d has 

positive context with any domain in G, and d does not have negative context or 

disallowed overlaps with any domain in P.  Return P when done. 
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Estimated FDR details 

This benchmark cannot be used for low-complexity proteins, as their shuffled 

sequences are similar to the original sequences. For this reason, the P. falciparum 

protein PF10_0374 had to be ignored in our benchmark; its extreme amino acid 

composition (38% E, 24% V, 10% P, 9% I, 7% L) led to shuffled sequences with high 

confidence predictions of the small Pfam repeat NPR (PF07391), which is also found 

in the real protein. 

Supplementary results  

Novel domain predictions may lead to GO term deletions with MultiPfam2GO 

Our example, the P. falciparum protein PF11_0197 has two Ank repeats in the 

Standard Pfam, which lead to the prediction of the molecular function “binding” and 

biological process “cellular process”. Using dPUC adds an ACBP (Acyl CoA binding 

protein) domain, which refines the molecular function to “acyl-CoA binding”, but the 

biological process “cellular process” is deleted, since MultiPfam2GO did not find that 

proteins containing this architecture possess this GO term with a probability greater 

than their threshold. Reiterating, although Ank-containing proteins also contained the 

“cellular process” annotation with a high probability, proteins containing both Ank 

and ACBP enriched for proteins without this annotation, enough that the probability 

of the annotation drops under the predictive threshold. This is clearly an artifact 

resulting from incomplete GO annotations, and MultiPfam2GO responds adequately 

by changing the hypothesis and deleting the GO term. Moreover, “cellular process” is 

a very broad GO term, and deleting it results in very little loss of information. 

dPUC Pfam parameter robustness 

In the case of P. falciparum, we also made predictions with Pfam HMMs in which the 

null amino acid distribution matched the organism’s amino acid distribution (using 

hmmbuild --null, followed by hmmcalibrate). However, we saw a diminished 
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performance in both the version of those predictions keeping the “gathering” 

thresholds, or using E-value thresholds. Therefore, we did not consider that potential 

solution any further (data not shown). 

There are many parameters controlling the scoring of our dPUC method (we only 

show the best set of parameters in Figure 2 and Figure 3). We could not exhaustively 

explore the large combinatorial space of parameters, but we tried many reasonable 

combinations. Surprisingly, we saw little sensitivity in performance when varying 

many of our parameters, including whether we removed single-instance architectures 

or not, and whether we used pair counts or “normalized” pair counts to estimate the 

pair distributions (data not shown). We saw larger fluctuations in the performance 

across organisms (sometimes the former method performed similar, and other times 

markedly worse than the latter) if we chose the marginal probabilities (pi = Σj pij) as 

background instead of the uniform distribution (pi = 1/n), or if we chose to count each 

architecture as a protein instead of counting every protein as a protein (data not 

shown). Lastly, we noticed that scaling the context scores (relative to the HMMER2 

scores) by factors larger than 1 (up to 50) did not improve upon 1, while factors 

smaller than 0.5 worsened performance (data not shown). 

We tried using other thresholds instead of the gathering thresholds in our context 

scoring model, for example bit thresholds equivalent to E-value thresholds (derived 

from the Extreme Value Distribution parameters that are pre-calculated in the Pfam 

database). However, the shape of the curve did not change significantly, but it was 

always shifted relative to its starting point (data not shown). Therefore, using the 

highest starting point, namely the gathering thresholds point, gives reasonable 

performance. 



 - 7 - 

New annotations on P. falciparum 

Using dPUC with E ≤ 1, we found 515 new domain instances across the proteome of 

P. falciparum. While all novel domains contribute to increased amino acid coverage, 

not all of these refine functional predictions. In particular, domain family repeats are 

ignored by MultiPfam2GO [2], so only proteins with new “domain families” (as 

opposed to “domain instances”) may have new functional annotations by such an 

approach. Therefore, we compiled the 196 P. falciparum proteins with 223 novel 

domain families (new Pfam family and clan), containing 317 new domain instances 

(including repeats). To assess the novelty of our predictions, we compared them to the 

current gene descriptions and domain predictions from Superfamily and SMART as 

included in PlasmoDB 6.0 [3]. We also used the OrthoMCL 4.0 database [4] to ask 

whether our P. falciparum functional predictions were coherent with Standard Pfam 

domains in orthologs. In the cases in which OrthoMCL and the conservation of our 

domain architectures predicted a single copy of a P. falciparum protein matched to 

one or more copies on other organisms, we predicted these proteins to be orthologous 

(protein pairs with a single ancestor separated by speciation; the multiple copies on 

other organisms are predicted to be in-paralogs, or recent duplications, by the criteria 

that OrthoMCL employs). We manually annotated all the proteins whose annotation 

could be improved from their PlasmoDB annotation, by narrowing down predictions 

with the combination of domain architectures and orthology predictions. 

We reannotated 18 proteins using novel domains not predicted by any other domain 

database, but which have architecture and ortholog support (Tables 3 and S3). In 

these cases, only dPUC predicted crucial domains that complete the architecture and 

elucidate a specific function, which is often confirmed by our orthology analysis. Of 

note, nucleolar proteins, involved in ribosomal biogenesis, stood out from our 

predictions. To ensure that these predictions did not conflict with existing annotations, 
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we compiled all known nucleolar proteins in Plasmodium and their homologous yeast 

proteins (data not shown), and we confirmed that our predicted nucleolar proteins co-

express with the known nucleolar proteins in the intraerythrocytic developmental 

cycle (data not shown). 

Additionally, 38 proteins with descriptions of “unknown function” in PlasmoDB 6.0 

had novel domains compared to Pfam, and these predictions were supported by 

Superfamily or SMART domains (data available on PlasmoDB and our website; 

Table 4). Combining our new domain architectures with ortholog predictions (Table 

S3), we were able to give descriptive names to these proteins, including homology to 

characterized proteins from other species, and to define specific molecular functions 

or biological processes when such functional predictions were sufficiently narrowed 

in our search. 

The majority of our predictions fall in 124 proteins, which contained novel Pfam 

families whose presence was actually implied by the protein’s current annotation and 

supported by other databases (Superfamily or SMART; data not shown), attesting to 

the high quality of our predictions. Fourteen family predictions were not supported by 

any of the evidence we considered, so they are likely false positives (data not shown). 

In most cases, these false predictions correspond to small repeats, they tend to fall in 

low-complexity regions, and some do not imply any functions. In other cases these 

predictions resemble known architectures, but these new domains are only a small 

portion of their HMMs (and the protein does not have enough space to fit the entire 

domain), suggesting spurious predictions. 

In total, we predicted 223 new domain families, of which 209 are high confidence 

predictions (in most cases with multiple lines of evidence), while 14 are probably 

false positives. We therefore estimate that at most 6.3% of novel family predictions 
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for P. falciparum are incorrect. We expect the discrepancy between this and the 

estimated FDR for the new domain instances (expected to be 1.6%; Table S1) to be 

due to our inability to model low complexity regions in our shuffled protein 

sequences, which were very common among our false positives. We suggested 

improved annotations for 56 proteins, which we have contributed to the PlasmoDB 

website as “community annotations.” 
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Supplementary figures 

 

Figure S1  - Standard Pfam and dPUC Pfam runtime analysis 

Each point corresponds to one of the 25,047 proteins of the combined proteomes of E. 

coli, M. tuberculosis, S. cerevisiae, and P. falciparum.  Computations were performed 

on a 2.66 GHz Intel processor with 8GB RAM. Runtime is measured in wall clock 

time.  The Standard Pfam runtime (x-axis) includes HMMER runtime, which takes 

the bulk of the time, as well as the Standard Pfam processing (removing the domains 

that do not pass the Pfam gathering thresholds, removing overlaps between local and 

glocal predictions according to Pfam family-specific rules, and removing overlaps 

between domains of the same Pfam clan by keeping the domains with the lowest E-
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value).  The dPUC Pfam overhead runtime (y-axis) excludes HMMER runtime, in 

order to show the small effect of incorporating dPUC relative to standard domain 

prediction.  Both axes are show in log scale to accommodate the long tails of the 

distributions.  Note that the dPUC runtime is bimodal: problems that require lp_solve 

are clustered around 0.01 s, while problems that do not require lp_solve (when the 

positive elimination removes all domain predictions, see Methods) are clustered 

around 0.0001 s. 

 

Figure S2  - Comparison of global properties of test organisms 

A. Plasmodium sp. have longer proteins, bacteria have smaller ones. In these 

boxplots of protein length distributions, the thick bar represents the median, the 

bottom and top of the box are the lower and upper quartiles, the plot whiskers extend 

to the most extreme datapoint which is no more than 1.5 times the interquartile range 
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from each box, and the outliers are not plotted. B. P. falciparum, M. tuberculosis, 

and H. sapiens have extreme amino acid compositions, S. cerevisiae has an 

average composition. This Principal Component Analysis plot of the average amino 

acid compositions per organism was generated using the functions prcomp and biplot 

from the R statistics package. The two largest principal components are plotted for 

each organism (black letters), and the amino acid axes are projected onto these two 

principal components (red letters and arrows). C. E. coli proteins are well-covered 

by domains, Plasmodium proteins are the least covered. Coverage taken from 

Standard Pfam domain predictions. This pattern may explain why dPUC Pfam 

predicts the most new domains in Plasmodium species and the least in E. coli: there 

are more domains left to be discovered in Plasmodium species, while E. coli leaves 

little room for novel discoveries. Meaning of bars, box, whiskers, and circles is the 

same as in panel A. D. Bacteria and Eukaryotes share only ~20% of Pfam 

families. Similarity of Pfam family content is measured by the Jaccard Index = I/U, 

in percents, where I is the list of Pfam families common to both organisms, and U is 

the union of Pfam families of both organisms. Image produced with heatmap.2 from 

the R statistics package, clustered using hierarchical clustering over Euclidean 

distance. 
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Figure S3  - FDR analysis of dPUC and CODD variations to determine features 
important for performance 

dPUC and CODD are as in Figure 2.  In addition, we ran CODD using the more 

complete dPUC positive context network instead of the original CODD network 

(yellow squares), improving performance.  Lastly, we introduced nCODD as a 

modification of CODD that exploits negative context, also ran with the dPUC 

network (orange “+”). 

 

Figure S4  - Ortholog Coherence analysis of dPUC and CODD variations to 
determine features important for performance 

All methods and colors are the same as in Figure S3, and the Ortholog Coherence test 

is the same as in Figure 3. 
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Supplementary tables 

Table S1  - Coverage of predictions by Standard Pfam and dPUC Pfam 

 E. c. M. t. P. f. P. v. S. c. C. e. D. m. H. s. 

Total         

Proteins 4,362 7,945 5,396 5,396 7,343 23,073 16,415 20,318 

Amino acids 1,373,030 2,660,223 4,094,366 3,750,741 3,289,690 10,018,548 8,860,453 11,244,964 

Standard 

Pfam 

        

Domains 5,465  8,640 5,000  4,242  7,742  27,170  24,073  43,575  

Doms. no reps 5,081 7,913 3,737 3,463 6,666 19,806 15,925 25,356 
Doms. reps 384 727 1,263 779 1,076 7,364 8,148 18,219 

Amino acids 906,388 1,366,966 745,934 637,697 1,266,350 3,740,085 2,985,558 4,519,325 

 (66.01%) (51.39%) (18.22%) (17.00%) (38.49%) (37.33%) (33.70%) (40.19%) 

Proteins 3,809 5,977 2,947 2,748 4,971 15,031 11,455 16,534 

 (87.32%) (75.23%) (54.61%) (50.93%) (67.70%) (65.15%) (69.78%) (81.38%) 

FDR 0.000101 0.000191 0.000860 0.000695 0.000226 0.000248 0.000287 0.000319 

dPUC Pfam         

Domains 5,700  9,158 5,515  4,728  8,223  29,363  26,258  46,692  

Doms. no reps 5,214 8,143 3,951 3,657 6,891 20,530 16,622 26,225 
Doms. reps 486 1,015 1,564 1,071 1,332 8,833 9,636 20,467 

Amino acids 927,991 1,423,372 800,037 686,553 1,306,095 3,917,358 3,153,737 4,683,468 

 (67.59%) (53.51%) (19.54%) (18.30%) (39.70%) (39.10%) (35.59%) (41.65%) 
Proteins 3,815 5,982 3,000 2,784 4,990 15,136 11,523 16,626 

 (87.46%) (75.29%) (55.60%) (51.59%) (67.96%) (65.60%) (70.20%) (81.83%) 

FDR 0.000333 0.000437 0.001949 0.001280 0.000565 0.001182 0.001160 0.001445 
FDR, new 

doms only 

0.008079 0.007731 0.016254 0.008393 0.008955 0.013861 0.012632 0.020171 

Domains No Repeats counts each family only once per protein, while Domains 

Repeats counts only extra instances of domains ignoring the first appearance in each 

protein. 
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Table S2  - Comparison of Gene Ontology predictions between Standard Pfam 
and dPUC 

 E. c. M. t. P. f. P. v. S. c. C. e. D. m. H. s. 

GO terms         

Same 10,840 16,413 7,581 7,172 13,841 36,282 30,817 47,424 

New 134 233 303 297 191 856 809 1,017 

More specific (standard) 46 76 59 59 65 217 241 300 

More specific (context) 45 76 61 64 77 224 253 321 

Less specific (standard) 18 40 12 24 22 137 220 196 

Less specific (context) 16 40 11 24 24 135 211 213 

Deleted 34 70 65 104 60 324 274 343 

GO terms (%)         

Same 99.1 98.88 98.24 97.46 98.95 98.17 97.67 98.26 

New 1.23 1.40 3.93 4.04 1.37 2.32 2.56 2.11 

More specific (context) 0.41 0.46 0.79 0.87 0.55 0.61 0.80 0.67 

Less specific (standard) 0.16 0.24 0.16 0.33 0.16 0.37 0.70 0.41 

Deleted 0.31 0.42 0.84 1.41 0.43 0.88 0.87 0.71 

Proteins         

Same 3,560 5,668 2,530 2,380 4,627 12,476 10,576 15,499 

New 35 72 101 94 64 286 263 325 

More specific 12 12 10 10 11 60 40 78 

New and more specific 18 30 21 20 21 49 71 98 

Less specific 4 14 3 2 6 36 54 52 

Deleted 7 14 19 24 9 62 50 71 

Deleted and less specific 3 2 1 5 0 18 19 15 

Mixed 10 28 28 38 34 151 177 218 

When counting GO terms, each category is mutually exclusive except for “more 

specific standard/context” and “less specific standard/context”. Each GO term in 

“more specific (standard)” (from the Standard Pfam) can be matched with at least one 

more specific GO term in “more specific (context)” (from dPUC), but these two 

counts do not match because becoming more specific is not always a one-to-one 

relationship. Similarly, for “less specific (standard)” and “less specific (context)” (one 

GO term can be mapped to multiple less specific terms). All GO term percents are 

relative to the number of GO terms in the Standard Pfam for each organism, and each 

“percent” category is mutually exclusive. When counting proteins, all categories are 

mutually exclusive. “Mixed” means that both “new or more specific” and “deleted or 

less specific” GO terms occurred in the same protein. 
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Table S3  - Novel dPUC Pfam predictions agree within orthologous groups 

Protein ID Suggested reannotation (this study, 

duplicated from Tables S3 and S4) 

OrthoMCL 4.0 groups (curated in 

parentheses if different) 

Phylogenetic range (OrthoMCL 

4.0, and curated in parenthesis 

if different) 

PFL0980w Debranching enzyme-associated 

ribonuclease (DRN1 ortholog), putative 

OG4_12978 Eukaryota, except Euglenozoa 

PF13_0222 RNA lariat debranching enzyme (DBR1 

ortholog), putative 

OG4_11656 Eukaryota 

PF11_0086 Poly(A)-binding protein-interacting 

protein 1 (PAIP1 ortholog), putative 

OG4_11313 (OG4_11313 Apicomplexa, 

OG4_18259 Metazoa) 

Apicomplexa, Fungi 

(Apicomplexa, Metazoa) 

PFE1390w Post-translational mRNA regulation 
(ABSTRAKT ortholog), putative 

OG4_13067 Eukaryota, except Fungi 

PF08_0130 U3 ribonucleoprotein component 

(PWP2 ortholog), putative 

OG4_11482 Eukaryota 

PF14_0456 U3 ribonucleoprotein component (DIP2 

ortholog), putative 

OG4_11396 Eukaryota 

PF10_0128 U3 ribonucleoprotein component 

(UTP13 ortholog), putative 

OG4_11588 Eukaryota 

PFI1025w U4/U6 snRNA-associated-splicing 

factor (PRP24 ortholog), putative 

OG4_34515 (OG4_34515 Apicomplexa, 

OG4_13068 Eukaryota, except 

Apicomplexa and Euglenozoa) 

Apicomplexa (Eukaryota, 

except Euglenozoa) 

PFL0985c Ribosome biogenesis regulator (TSR3 

ortholog), putative 

OG4_11113 Eukaryota and Archaea 

MAL8P1.19 Ribosomal biogenesis RNA helicase 

protein (DBP10 ortholog), putative 

OG4_11705 Eukaryota 

PFE0560c Atypical Golgi transport protein (AVL9 
ortholog) with MORN domains, 

putative 

OG4_42850 (OG4_42850 Plasmodium, 
OG4_50280 Piroplasmida, OG4_114378 

Sarcocystidae, OG4_13875 Metazoa, Fungi, 

other Eukaryota) 

Plasmodium (Alveolata, Fungi, 
Metazoa, other Eukaryota) 

PFL1455w Vacuolar transporter chaperone 

(VTC2/3/4 ortholog), putative 

OG4_14575 (OG4_14575 Apicomplexa, 

OG4_14447 Eukaryota, except Metazoa, 

OG4_21484 and OG4_52804 additional 

Fungi) 

Eukaryota, except Metazoa 

PFL2255w DNA replication origin binding protein 

(DIA2 ortholog), putative 

OG4_55945 (OG4_55945 Apicomplexa, 

OG4_46325 Fungi, maybe OG4_13521 

Metazoa, Fungi, Viridiplantae) 

Apicomplexa (Apicomplexa, 

Fungi) 

PFF1070c Ribosome or tRNA 

methylthiotransferase (RIMO or MIAB 

ortholog) or CDK5 regulatory subunit-

associated protein 1, putative 

OG4_10254 Bacteria, Archaea, and 

Eukaryota, except Fungi 

PFL1045w FbpA domain protein, putative 

OG4_34378 (maybe related to OG4_11062, 

Eukaryota and Archaea) 

Aconoidasida (may be related 

to an Eukaryota and Archaea 

group) 
MAL13P1.182 GID8 ortholog, putative OG4_11912 Eukaryota, except Euglenozoa 

MAL13P1.79 CCCH zinc finger protein, putative OG4_23238 Apicomplexa 

MAL13P1.37 Tripartite motif protein, putative OG4_37704 Aconoidasida 
PFE1240w Wybutosine synthesis protein (TYW1 

ortholog), putative 

OG4_11477 Eukaryota and Archaea 

PFF1490w Tetrahydrofolate 
dehydrogenase/cyclohydrolase (MTD1 

ortholog, MIS1/ADE3 homolog without 

FTHFS domain), putative 

OG4_47225 (OG4_47225 Plasmodium, 
OG4_114990 Sarcocystidae, OG4_18660 

Fungi, OG4_51093 and OG4_118871 

Viridiplantae, maybe OG4_10140 Bacteria, 

Eukaryota except Apicomplexa, some 

Archaea) 

Plasmodium (Eukaryota and 
Bacteria, some Archaea) 

MAL8P1.139 Regulator of (H+)-ATPase in Vacuolar 

membrane (RAV1 ortholog), putative 

OG4_24797 (OG4_24797 Plasmodium, 

OG4_20682 Fungi, OG4_14510 Metazoa) 

Plasmodium (Eukaryota) 

PF08_0124 CACTIN homolog, putative OG4_12820 Eukaryota, except Euglenozoa 

PF10_0152 Non-canonical cytoplasmic specific 
poly(A) RNA polymerase protein 

(CID13 ortholog), putative 

OG4_12495 Eukaryota, except Euglenozoa 

MAL13P1.170 Non-canonical poly(A) RNA 
polymerase protein (PAP2/TRF5 

ortholog), putative 

OG4_10880 Eukaryota 

PFI1560c Required for mitochondrial morphology 
(MAM3 ortholog), putative 

OG4_10104 Eukaryota and Bacteria, some 
Archaea 

PF10_0126 Phosphoinositide binding protein 

(HSV2/ATG18 ortholog), putative 

OG4_11612 Eukaryota, except Euglenozoa 

PFI0510c DNA repair protein (REV1 ortholog), 

putative 

OG4_80162 (OG4_80162 Plasmodium, 

OG4_12179 Eukaryota except most 

Apicomplexa) 

Plasmodium (Eukaryota) 

MAL13P1.54 Alternative splicing regulator (SMU-1 

ortholog), putative 

OG4_12877 Eukaryota, except Euglenozoa 

and Fungi 

PF14_0052 COBW domain-containing protein 1 
(CBWD1 ortholog), putative 

OG4_10840 Eukaryota and Bacteria, some 
Archaea 

PF08_0012 Histone lysine N-methyltransferase, OG4_33853 (OG4_33853 Apicomplexa, Apicomplexa (Apicomplexa 



 - 17 - 

putative OG4_33231, OG4_36931, OG4_50963, 

OG4_51096, OG4_90967, and 
OG4_100563 Viridiplantae) 

and Viridiplantae) 

PFE1445c T-cell immunomodulatory protein 

(human TIP homolog), putative 

OG4_13053 Metazoa and Apicomplexa, 

some Fungi and other 
Eukaryota 

PFL0975w Unconventional myosin fused to IQ and 

RCC1 domains, putative 

OG4_28078 (OG4_28078 Plasmodium and 

Tetrahymena, OG4_10145 Apicomplexa 

only) 

Plasmodium and Tetrahymena 

(Alveolata) 

PF11_0276 Steryl ester hydrolase 

(TGL1/YEH1/YEH2 ortholog), putative 

OG4_36130 (OG4_36130 Plasmodium, 

OG4_10339 Metazoa, Fungi, Viridiplantae, 

OG4_22233 additional Fungi, and very 

many more small groups for Metazoa) 

Plasmodium (Eukaryota, 

except Euglenozoa) 

PF13_0190 Chaperone binding protein, putative OG4_22006 Apicomplexa 
PF11_0287 CRAL/TRIO protein, putative OG4_19268 Apicomplexa 

PF11_0197 Acyl-CoA-binding protein, putative OG4_13447 Eukaryota, except Euglenozoa 

PF14_0647 Rab GTPase activator, putative OG4_23919 (OG4_23919 Apicomplexa, 
OG4_16111 Metazoa, OG4_64715 

Trichomonas) 

Apicomplexa (Apicomplexa 
and Metazoa) 

PFL0575w PHD finger and flavin containing amine 
oxidoreductase, putative 

OG4_25486 Apicomplexa 

MAL13P1.246 E1-E2 ATPase, putative OG4_42315 Plasmodium 

PF11_0116 Nol1/Nop2/Fmu-like protein, putative OG4_12812 Metazoa, Apicomplexa, and 

Euglenozoa 

MAL7P1.127 Rab GTPase activator and protein 

kinase, putative 

OG4_30676 (OG4_30676 Apicomplexa, 

OG4_15147 Metazoa and a few more 

Apicomplexa) 

Apicomplexa (Apicomplexa 

and Metazoa) 

PFC0425w PHD finger protein, putative OG4_27967 Plasmodium 

PFI0975c Regulator of chromosome condensation, 

putative 

OG4_47073 Plasmodium 

PFD0900w Regulator of chromosome condensation, 

putative 

OG4_48398 Plasmodium 

MAL7P1.132 Protein kinase, putative  OG4_42790 Plasmodium 

PFF0810c Ras GTPase, putative OG4_48492 Plasmodium 
PFL1990c RNA binding protein, putative OG4_33248 Plasmodium 

PF07_0066 RNA binding protein, putative OG4_20129 Alveolata, other Eukaryota 

PF13_0147 RNA binding protein, putative OG4_20130 Alveolata 
PFF1120c EGF-like membrane protein, putative OG4_21327 Apicomplexa, some Metazoa 

PF14_0262 WD40 and TPR repeats protein, putative OG4_14359 Eukaryota, except Euglenozoa 

PFI0275w WD40 repeat and EF hand protein, 
putative 

OG4_33245 Plasmodium 

PF10_0285 WD40 repeat protein, putative OG4_48272 Plasmodium 

PF11_0195 WD40 repeat protein, putative OG4_43534 Plasmodium 

PF14_0640 WD40 repeat protein, putative OG4_12936 Eukaryota, except Euglenozoa 

MAL13P1.308 ARM repeat protein, putative OG4_22396 Apicomplexa 

In many instances, OrthoMCL seems to partition true orthologous groups, so we 

joined them back as follows: the Pfam architectures on their sequences strongly agree 

within and across the selected groups, to the exclusion of all or most other 

orthologous groups, and the organisms present in these groups must not overlap 

(which is consistent with a partition). 


